
International Journal of Information Technology and Knowledge Management
July-December 2009, Volume 2, No. 2, pp. 437-440

EFFORT ESTIMATION IN COMPONENT BASED
SOFTWARE ENGINEERING

Puneet Goswami*, P. K. Bhatia** & Vijender Hooda*

Component-based software engineering (CBSE) represents an exciting and promising paradigm for software development.
Software components are one of the key issues in CBSE. The software development community is continuously seeking new
methods for improving software quality and enhancing development productivity. There is an increasing need for component-
based metrics to help manage and foster quality in component-based software development. The traditional software product
and process metrics are neither suitable nor sufficient in measuring the complexity of software components, which ultimately
is necessary for quality and productivity improvement within organizations adopting CBSE. In the software development
process, scheduling and predictability are important components to delivering a product on time and within budget. Effort
estimation artifacts offer a rich data set for improving scheduling accuracy and understanding the development process. In
this paper, we survey few existing component-based reusability metrics. These metrics give a border view of component’s
understandability, adaptability, and portability. This paper is split into four sections. First section of this paper emphasizes on
need of effort estimation in component based software engineering. Second section of this paper elaborates concept of deriving
a metrics using this concept of COCOMO Model. Third section emphasize on how to calculate adjustment factor for the
software might be partly developed from software already existing. Fourth section elaborates conclusion and future work.
Paper proposes metrics to evaluate effort and development time by conventional and component based software engineering
approach and shows the result comparison.

INTRODUCTION

Component-based software engineering (CBSE) has
recently attracted tremendous attention from both the
software industry and the research community. It has been
widely recognized that more and more software systems are
being built by assembling existing and new components. A
lot of research efforts have been devoted to analysis and
design methods for component-based software. Although
there are many published articles addressing in building
component-based programs, hardly very few of them
address about component-based measurement [1, 2].

Component-based software development is the process
of assembling software components in an application such
that they interact to satisfy a predefined functionality [3-6].
Each component will provide and require pre-specified
services from other components, thus, the notion of
component interfaces becomes an important issue of
concern. A key to the success of CBSE is its ability to use
software components that are often developed by and
purchased from third parties.

Poulin [7] presents a set of metrics used by IBM to
estimate the efforts saved by reuse. The study suggests the
potential benefits against the expenditures of time and
resources required to identify and integrate reusable software

into a product. Study assumes the cost as the set of data
elements like Shipped Source Instructions (SSI), Changed
Source Instructions (CSI), Reused source Instructions (RSI)
etc.

Reuse Percentage measures how much of the product
can be attributed to reuse and is given as

Product Reuse Percentage = (RSI / (RSI + SSI)) * 100%

Paper proposes several other reusability metrics in terms
of cost and productivity like Reuse cost avoidance, Reuse
value added and Additional development cost, which can
be used significantly for business applications.

Cho et. al. [8] proposes a set of metrics for measuring
various aspects of software components like complexity,
customizability and reusability. The work considers two
approaches to measure the reusability of a component. The
first is a metric that measures how a component has
reusability and may be used at design phase in a component
development process. This metric, Component Reusability
(CR) is calculated by dividing sum of interface methods
providing commonality functions in a domain to the sum
of total interface methods. The second approach is a metric
called Component Reusability level (CRL) to measure
particular component’s reuse level per application in a
component based software development. This metric is again
divided into two sub-metrics. First is

CRL LOC
, which is

measured by using lines of code, and is expressed as
percentage as given as

CRL LOC (C) = (Reuse (C) / Size (C)) * 100%

* Dronacharya College of Engineering Gurgaon, Haryana, INDIA
** Reader, Deptt. of Computer Sc. & Engg, GJUS&T, Hisar, Haryana,

INDIA

��� ������	
������	��	��	������	�	��������	�����

COM6\D:\HARESH\11-JITKM

The second sub-metric is
CRLFunc

,

which is measured by

dividing functionality that a component supports into
required functionality in an application. This metric gives
an indication of higher reusability if a large number of
functions used in a component. However, the proposed
metrics are based on lines of codes and can only be used at
design time for components.

Effort estimation consists in predict how many hours
of work and how many workers are needed to develop a
project. The effort invested in a software project is probably
one of the most important and most analyzed variables in
recent years in the process of project management. The
determination of the value of this variable when initiating
software projects allows us to plan adequately any
forthcoming activities. As far as estimation and prediction
is concerned there is still a number of unsolved problems
and errors. To obtain good results it is essential to take into
consideration any previous projects. Estimating the effort
with a high grade of reliability is a problem which has not
yet been solved and even the project manager has to deal
with it since the beginning.

Several methods have been used to analyze data, but
the reference technique has always been the classic
regression method. Therefore, it becomes necessary to use
some other techniques that search in the space of non linear
relationship. Some works in the field have built up models
(through equations) according to the size, which is the factor
that affects the cost (effort) of the project the most [Do l00],
[KT 85]. The equation that relates size and effort can be
adjusted due to different environmental factors such as
productivity, tools, complexity of the product and other ones.
The equations are usually adjusted by the analyst to fit the
real data.

From this perspective, different equation patterns have
come out [Do l00], [Hu 97]. But none of them has produced
enough evidence to be considered the definitive cost
function, in case there is one. Nevertheless, the characteristic
that has to be satisfied by the estimation equation is: the
model should be capable of doing its best on estimating
reliably the majority of the real values.

It hasn’t been possible until now to obtain an equation,
set of equations or patterns of equations that can satisfy this
premise, and therefore there is no reference of comparison
parameter. Then it can be assumed that the equations are
not a good tool to obtain an optimum prediction.

The estimation of the effort invested in the development
of software projects can turn into a complicated problem to
be solved if the appropriate models are not available.
Unfortunately, until this moment this is the situation, since
there are not the necessary records in the software
development companies. Years of investigation are required
in order to obtain the volumes of information needed to carry

Using this concept of components, time units and
programmers, Randy K. Smith (11) derive a suite of metrics
that characterizes the effect of scheduling on CBSD. These
metrics provide a starting point to examine effort estimation
in CBSD. The metrics capture the dynamic nature of
component development that distinguishes the paradigm
from traditional software development.

In order to determine the application of the metrics to
effort estimation, research questions must be answered.

COCOMO is a well-studied and accepted effort
estimation model. By calculating adjustment factor and size
(equivalent) we can calculate effort required for any project
in component based software engineering. As the software
might be partly developed from software already existing
(that is, re-usable code), a full development is not always
required. In such cases, the parts of design document
(DD%), code (C%) and integration (I%) to be modified are
estimated. Then, an adjustment factor, A, is calculated by
means of the following equation :

The size equivalent is obtained by

S (equivalent) = (S × A) / 100

Where S represents the thousands of lines (KLOC) of
the module.

A = 0.4 DD + 0.3 C + 0.3 I (adjustment factor)

Empirical Study

Intermediate COCOMO equations

E = a
i
(KLOC)di * EAF

D = c
i
(E)di

Where E is effort applied in Person-Months, and D is
the development time in months. EAF = The multiplying
factors for all 15 cost drivers are multiplied to get effort
adjustment factor.

out a prediction with a good level of reliability and with a
low error margin.

In CBSD, a programmer can be working on multiple
components at any given time. Conversely, at any given time
a component may have multiple developers. During a single
time unit, the project can have multiple components under
development by multiple programmers (11)

Figure 1: Concept of Components and Time Units of Programmers

Assignments Programmer

Components Programmers
Time Components

������	����������	��	���������	�����	�������	��
�������
 ���

COM6\D:\HARESH\11-JITKM

Intermediate COCOMO Model

Boehm introduced an additional set of 15 predictors called
cost drivers in the intermediate model to take account of
the software development environment. Cost drivers are used
to adjust the nominal cost of a project to the actual project
environment, hence increasing the accuracy of the estimate.

Cost Drivers

(i) Product attributes

a) complexity of the product

b) Size of application database

c) Required s/w reliability

(ii) Hardware Attributes

a) Run time performance constraints

b) Memory constraints

c) Virtual machine volatility

d) Turnaround time

(iii) Personal Attributes

a) Analyst capability

b) Programmer capability

c) Application experience

d) Virtual m/c experience

e) Programming language experience

iv) Project Attributes

a) Modern programming practices

b) Use of software tools

c) Required development Schedule

Consider the effort estimation for a new project with
estimated 400 KLOC embedded system. Project manager
has a choice of hiring from two pools of developers:
Very highly capable with very little experience in the
programming language being used.

Developers of low application experience but a lot of
experience with the programming language. What is the
impact of hiring all developers from one or the other pool?

Conventional Approach:

This is the case of embedded mode and model is
intermediate COCOMO.

E = a
i
(KLOC)di

= 2.8 (400)1.20 = 3712 PM

Case I: Developers are very highly capable with very
little experience in the programming being used.

EAF = 0.86 × 1.14 = 0.9804

E = 3712 × .9804 = 3639 PM

D = 2.5 (3639)0.32 = 34.5 M

Where 0.86 & 1.14 are predefined values by Boehm
for personnel attributes cost drivers.

Figure 2: Multipliers of Different Cost Drivers

Table 1
COCOMO Modes

Project ai bi ci Di

Organic 3.2 1.05 2.5 0.38
Semidetached 3.0 1.12 2.5 0.35
Embedded 2.8 1.20 2.5 0.32

Figure 3: Effort and Development Time Estimation
in Conventional Approach

Case II: Developers are of low application experience
but lot of experience with the programming language being
used.

EAF = 1.29 × 0.95 = 1.22

E = 3712 × 1.22 = 4528 PM

D = 2.5 (4528) 0.32 = 36.9 M

Case II requires more effort and time. Hence, low
quality developers with lot of programming language
experience could not match with the performance of very
highly capable developers with very litter experience.

Component Based Software Engineering Approach:

Size Equivalent

As the software might be partly developed from software
already existing (that is, re-usable code), a full development
is not always required. In such cases, the parts of design

��� ������	
������	��	��	������	�	��������	�����

COM6\D:\HARESH\11-JITKM

document (DD%), code (C%) and integration (I%) to be
modified are estimated. Then, an adjustment factor, A, is
calculated by means of the following equation.

The size equivalent is obtained by

S (equivalent) = (S × A) / 100

Where S represents the thousands of lines (KLOC) of
the module.

A = 0.4 DD + 0.3 C + 0.3 I

Considering the DD% =5, C% =10, I% = 5; in the above
project then

A = 0.4 * 5 + 0.3 * 10 + 0.3 * 5

A = 2.0 + 3 + 1.5 = 6.5

NOW,

S (Size equivalent) = S* A /100 = 400*6.5/100 = 26

E = a
i
 (KLOC)di * EAF

Case I: Developers are very highly capable with very
little experience in the programming being used.

E = 2.8 (26) 1.2 * 0.9804

E = 136.93 PM

D = 2.5 (136.93)0.32 = 12.06 M = 12 M

deciding the complexity size of the software component on
the basis of the computed value of this metric. More work
towards the validation of this metric is suggested as future
directions by taking into consideration several software
components from the software organizations adopting
CBSE. This paper identifies and quantifies parameters that
impact development effort in CBSD. The parameters
identified in this paper specifically examine the
characteristics of CBSD. This fundamental paper lays the
foundation to examine the dialog of the differences between
CBSD and traditional development practices.

REFERENCES

[1] Gill N. S., Grover P. S. Component-based Measurement:
Few Useful Guidelines. ACM SIGSOFT SEN 28(6) (2003)
30.

[2] Brereton, B., Budgen, D. Component-Based Systems: A
Classification of Issues. IEEE Computer, ((2000) 54-62.

[3] Hevner A. R. Phase Containment Metrics for Software
Quality Improvement. Information and Software
Technology. 39 (1997) 867-877.

[4] Gill N. S. Reusability Issues in Component-Based
Development. ACM SIGSOFT SEN, 28(6) (2003) 30.

[5] Kamiya, T., Kusumoto S., Inoue K., Mohri Y. Empirical
Evaluation of Reuse Sensitiveness of Complexity Metrics.
Information and Software Technology. 41 (1999) 297-305.

[6] Sedigh-Ali, S., Ghafoor, A., Paul, Raymond A. Metrics-
Guided Quality Management for Component-Based
Software Systems. Proceedings of the 25th Annual
(COMPSAC’01) (2001). http://dlib2.computer.org/
conferen/compsac/1 37 2/pdf/1 3720303 .pdf.

[7] Sedigh-Ali, S., Ghafoor, A., Paul, Raymond A. Software
Engineering Metrics for COTS-Based Systems. IEEE
Computer, (2001) 44-50.

[8] J. Poulin, J. Caruso and D. Hancock, “The Business Case
for Software Reuse, IBM Systems International Computer
Software and Applications Conference Journal, 32(40)
(1993) 567-594.

[9] Eun Sook Cho et al., “Component Metrics to Measure
Component Quality”, Proceedings of the Eighths Asia-
Pacific Software Engineering Conference, 1530-1362/01.

[10] Brown, Alan W., Wallnau, Kurt C. The Current State of
CBSE. IEEE Software, (1998) 37-46.

[11] Fenton, Norman E., Neil Martin. Software Metrics: Success,
Failures and New Directions. The Journal of Systems and
Software. 47 (1999) 149-157.

[12] Effort Estimation in Component-Based Software
Development: Identifying Parameters Randy K. Smith The
University of Alabama P. O. Box 870290 Tuscaloosa, Al
35487-0290 rsmith@cs.ua.edu.

Case II: Developers are of low application experience
but lot of experience with the programming language being
used.

E = 2.8 (26)1.2 * 1.22

E = 170.40 PM

D = 2.5 (170.4) 0.32 = 12.94 M = 13 M

CONCLUSIONS AND FUTURE DIRECTIONS

The proposed metric appears to be logical and fits the
intuitive understanding but is not the sole criteria for

Figure 4: Effort and Development Time Estimation
in CBSE Approach

